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Abstract 
Despite serious concerns raised by the proven ability of 
computer viruses to spread between individua.1 systems 
and establish themselves as a persistent infection in the 
computer population, there have been very few efforts t o  
analyze their propagation theoretically. The strong anal- 
ogy between biological viruses and their co~nputntional 
counterparts has motivated us t o  adapt the techniques 
of mathematical epidemiology to the study of computer- 
virus propagation. In order to allow for  the most general 
patterns of program sharing, we eztend a standard epi- 
demiological model by placing i t  on a directed graph and 
use a combination of analysis and simulation to study 
i ts  behavior. W e  determine the conditions under which 
epidemics are likely to  occur, and in cases where they 
do, we ezplore the dynamics of the ezpected number of 
infected individuals as a function of t ime .  W e  conclude 
that an imperfect defense against computer viruses can 
still be highly effective in  preventing their widespread 
proliferation, provided that the infection rate does not 
ezceed a well-defined critical epideniac threshold. 

1 Introduction 
A fascination with the potential ability of computer 
programs to mimic biological processes such a s  self- 
replication and the workings of the human brain dates 
from the earliest days of computer science [ l ,  2, 31. Until 
recently, much of the work in this field (with the notable 
exception of genetic algorithms [4]) was relegated to spo- 
radic reporting in the Mathematical Games department 
in Sctentific Amerzcan. In the last few years, however, 
a remarkable resurgence of interest in the analogies be- 
tween biological and computational mechanisms has re- 
vitalized a number of long-neglected fields, including 
neural networks [ 5 ] ,  cellular automata [6], and artifi- 
cial life [7]. Recently, a new concept has added itself 
to this intellectual milieu: the computer virus [8] - a 
self-replicating program that spreads wi th in  computing 
systems, either by attaching itself parasitically to ex- 
isting programs or by spawning self-sufficient copies of 
itself The compelling analogies that exist between 
computer viruses and their biological counterparts have 
been apparent ever since the term was coined [8]. This 
has led some authors to suggest that the mathematical 

techniques which have been developed for the study of 
the spread of infectious diseases might be adapted to the 
study of the spread of computer viruses [8, 91. We be- 
lieve that. this paper represents the first serious attempt 
to adapt. mat.liemat.ica1 epidemiology to this problem. 
In the remainder of this section, we give a very brief 
history of the problem of computer viruses and describe 
our objectives in  stiidying them. Then, we critique some 
previous work 011 t.he spread of computer viruses, follow- 
ing it. with a similar discussion of the relevant literature 
on mat.1ieniatical epidemiology ’. We conclude that the 
standard epidemiological approach has much to offer, 
but. that it must be augmented in order to account prop- 
erly for the localized nature of program sharing (one of 
the major vectors for viral infection). Finally, we pro- 
pose a model which explicitly incorporates such locality, 
discuss our approach to studying the behavior of that, 
model, and provide an outline for the remainder of the 
paper. 

1.1 
Computer viruses were originally thought of as prob- 
lematic primarily because of their ability to carry out 
directed attacks against isolated systems [8]. Their po- 
tential ability to flow from user to user in a system 
meant t.hat attacks could reac.h parts of the system that 
had been t,hought. t.0 be more secure. In the last. few 
years, however, as viruses have been written and re- 
leased outside of controlled environments and into the 
world’s computing community, their ability to spread 
between individual systems and thus affect a global col- 
lection of systems has proved to be of greater concern. 
Since the first documented reports of microcomputer 
viruses in the mid-1980’s [lo, 111, they have spread 
throughout the world. At this date, we estimate very 
conservat.ively that there are many thousands of micro- 
computers with active virus infections, and this popu- 
lation of infected systems continues to spread the in- 
fection. The 1nt.ernet Worm [12, 13, 14, 151 infected at  
least, hundreds and probably thousands of computers on 
the Internet in the space of a few hours in November, 
1988, with the resultant loss of a substantial amount of 
service and many hours devoted to expurgating it from 
systems. 

The Problem of Computer Viruses 

‘The latter case is sometimesreferred to as a “worm”, but since 
we are solely concerned with the property of self-replication, we 
shall call all such entities “viruses”. 

’We use the term “epidemic” to refer to any widespread, per- 
sistent infection in a population, even in cases where the fraction 
of infected individuals is extremely low. 
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Our long-term goal is to develop and analyze quantita- 
tively models which capture the spreading characteris- 
tics of computer viruses. The potential benefits of doing 
so can be divided into two major categories. 
First, mathematical models could aid in the evaluation 
and development of general policies and heuristics for 
inhibiting the spread of viruses. Although it is well 
known that a general-purpose computing system need 
only satisfy minimal conditions to be capable in princi- 
ple of being completely infiltrated by a virus [8], the set 
of conditions under which this is lzkely to occur may be 
considerably more restricted. We wish to gain a quanti- 
tative understanding of the vulnerability of current sys- 
tems to viral infections and to determine the effective- 
ness of proposed heuristics for inhibiting viral spread 
(16, 17, 18, 19, 201. In a similar vein, mathematical 
modelling of the sort we describe could be helpful in the 
design of new systems - allowing a reasonable tradeoff 
between the ease with which legitimate programs can  
flow and the ease with which viruses can spread. 
A second major use for mathematical modelling, more 
in the spirit of biological epidemiology, is to apply it to 
a particular epidemic. In its more passive application, 
modelling can aid in predicting the course of a particular 
epidemic, so as to plan what resources will be needed 
to deal with the problem. A more aggressive role for 
modelling, which is gaining popularity in the biological 
realm, is to use it to determine the optimal policy for 
controlling the course of a particular epidemic by isolat- 
ing or immunizing the population at  appropriate times 

In this paper, we shall deduce a number of general prop- 
erties of the spread of computer viruses from simple 
models which capture some essential features of the 
networks in which they propagate. We believe that 
this work is an important first step towards a theory 
which ultimately will be sufficiently realistic to evaluate 
specific proposals for thwarting the spread of computer 
viruses. 

1.2 Previous Work on Computer Virus 

Cohen was the first to define and describe computer 
viruses in their present form [8]. He demonstrated that, 
in the worst case, infection can spread to the transitive 
closure of information flow in a system. In other words, 
if A can infect B and B can infect C, a virus that origi- 
nates with A can propagate to C. He performed exten- 
sive experiments on a variety of systems (most of them 
multi-user) which demonstrated that a virus could prop- 
agate to a level of security higher than that from which 
it had originated. He and Murray [9] pointed out the 
connection between computer virus spread and biologi- 
cal  epidemiology, but neither pursued it to the point of 
developing an explicit model. 
Recently, there have been attempts to describe viral 
spread more quantitatively. Gleissner [21] examined a 
model of computer virus spread on a multi-user system. 
Quantitative analysis of the model reproduced Cohen’s 
result that a virus would reach the transitive closure of 
information flow, and showed that this could occur at 

~ 4 1 .  
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an exponeiit.ia1 rate. However, the usefulness of these 
results was limited because no allowance was made for 
the fact t.liat. individual users of the system might detect 
and remove viruses or alert other users to their presence. 
Tippe1.t. [22] iised the well-known fact that many popu- 
latioii models exhibit, exponential growth in their initial 
phases t.0 suggest that the computer virus population 
might grow to worrisome proportions. However, he did 
not justify the application of such models to the spread 
of computer viruses, and the paucity of data on the ac- 
tual spread of computer viruses makes any such extrap- 
olation extremely suspect. Jones and White [23] exam- 
ined an analogy between viral spread and infestations 
of crops by insects and other pests, but did not present 
ail explicit. model. Their claim that segregating com- 
puting resources leads to an increase i n  the virus p o p  
ulat,ion seems particularly questionable. Solomon [25] 
studied a deterministic model of computer virus prop- 
agation based upon niathematic.al epidemiology. The 
quantitative results that he obtained are equivalent to 
Eq. 2 of this work. He also introduced and analyzed a 
novel and potentially important form of inter-virus in- 
teraction, whereby the increased vigilance of a user who 
detects any virus will increase his or her probability of 
detecting other viruses in the future. 

1.3 Previous Epidemiological Models arid 
Their Limit at ions 

The first application of mathematical modelling to the 
spread of infectious disease was carried out by Daniel 
Bernoulli in 1760 [26]. Although his work predated 
the identification of the agent responsible for the trans- 
mission of smallpox by a century, he formulated and 
solved a differential equation describing the dynamics 
of the infect,ion w1iic.h is still of value in our day. The 
development, of matliematical epidemiology was stalled 
by a lack of understanding of the mechanism of infec- 
tious spread until the beginning of this century [27]. 
McKendrick developed the first stochastic theory in 
1926 [28], and in  t.he 1930’s Kermack and McKendrick 
[27] established the extremely important threshold the- 
orem, showing that. the density of susceptible individu- 
als must exceed a certain critical value in order for an 
epidemic t,o occur. In 1975, Bailey [27] reported that 
t,he number of references to mathematical epidemiology 
had quintupled to 500 in a space of 18 years. Currently, 
there are several papers on mathematical epidemiology 
per month in Mathemat i ca l  B iosc i ences ,  one of many 
journals which publishes such work. 
In order t.0 apply this vast catalog of mathematic.al tech- 
niques to t.he study of computer virus spread, we view 
a single computing system as an individual in a popu- 
lation of similar individuals. Following the usual epi- 
demiological approach, we neglect the details of infec- 
tion inside a single system and consider an individual 
to be in one of a small number of discrete states, e.g. 
infected,  uninfected,  i m m u n e ,  etc. One might object to 
such a simplistic classification because some types of 
computer viruses, such as t,liose that infect a large class 
of executable files in a system, can cause a system to be- 
come .‘more” infected over time - thereby increasing 
the rat.e a t  which infection can be transmitted from that 
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system. However, the time scale on which the internal 
infection occurs is generally much shorter than that on 
which the infection spreads to other systems, so such a 
simplification is quite reasonable. 
A further simplification which is characteristic of epi- 
demiology is to abstract the details of viral transmis- 
sion into a probability per unit time that a particular 
infected individual will infect a particular uninfected in- 
dividual. Likewise, we abstract the details of detection 
and removal of a virus into a probability per unit time 
for an infected individual to be "cured". One could in 
principle derive the infection rates from the known dr- 
tails of the transmission process and the pattern of pro- 
gram sharing. If this information is unavailable (as it 
was for Bernoulli), it is often possible to simply measure 
the rates or infer them by fitting the observed course of 
an epidemic to a model. 
Most current epidemiological models are homogeneous, 
in the sense that an infected individual is equally likely 
to infect any of the susceptible individuals. Taken lit- 
erally, this means that a man sneezing in Chicago is as 
likely to infect someone in New Delhi as he is some- 
one else in Chicago. This approximation turns out to 
be adequate for diseases such as influenza, in which the 
disease can be transmitted via casual contact. However, 
its validity is generally conceded to be questionable for 
diseases in which each individual has a limited number 
of potentially infectious contacts. 
Program sharing is far from homogeneous, as one can 
readily establish by a bit of introspection. Most indi- 
viduals exchange the majority of their programs with 
just a few other individuals, and never have any con- 
tact with the vast majority of the world's population. 
Another aspect of program sharing which must be taken 
into account in models is the fact that it can be strongly 
asymmetric. For example, the rate at  which a retailer 
ships software greatly exceeds the rate a t  which a cus- 
tomer sends software to the retailer. Such asymmetry is 
occasionally important in the biological realm as well, 
particularly in the case of sexually transmitted diseases. 
Recognized deficiencies of the assumption of homoge- 
neous, symmetric interactions have encouraged a vari- 
ety of attempts to incorporate heterogeneity and asym- 
metry into biological models. The spatial model is one 
method that has been used to account for local, sym- 
metric interactions [27]. Local, asymmetric interactions 
have typically been studied by segregating the popu- 
lation by age, sex, or geographic location, and then 
treating interactions within the individual subpopula- 
tions as homogeneous and symmetric [29, 30, 321. The 
model presented in this paper is general enough to en- 
compass both of these approaches, the original homo- 
geneous model, and a variety of other heterogeneous 
interaction models, some of which we shall explore in 
this paper. 

1.4 Modelling Viral Epidemics on Directed 
Graphs 

We account for the heterogeneous communication pat- 
tern among individual computer systems in a new and 
general way: by representing an individual system (a 

microcomputer, for instance) as a node in a graph. Di- 
rected edges from a given node j to other nodes repre- 
sent the set of individuals that can be infected by j. A 
rate of infection is associated with each edge. Similarly, 
a rate at which infection can be detected and "cured" 
is associated with each node. 
Throughout this paper, we shall study one of the sim- 
plest of the standard epidemiological models, the SIS 
(susceptible -+ infected - susceptible) model, on these 
graphs. In the SIS model, individuals immediately be- 
come susceptible once they are cured of an infection. 
In our case, this represents an extreme in which users 
do not become more vigilant after having experienced 
a viral infection. Our emphasis will be on determining 
the probability that an infection becomes extinct in a 
specified population. Under the conditions in which an 
epidemic is viable, we characterize the expected number 
of infections as a function of time, particularly equilib- 
ria and fluctuations about them. We shall recover some 
of the well-known results for homogeneous interactions 
as limiting cases of our more general results. 
In the next section, we discuss this model on random 
graphs. In doing so, we gain a good deal of insight 
into the relationship between homogeneous and graph 
models of epidemics and develop a number of useful an- 
alytical techniques and approximations. Then, in sec- 
tions 3 and 4, we investigate the model on hierarchical 
graphs and N-dimensional Cartesian lattices. We shall 
conclude in section 5 with a summary of our findings, 
their potential implications for hindering the spread of 
computer viruses, and recommendations for future work 
in this area. 

2 SIS Model on a Random Graph 
Due to its structural simplicity and the relative ease 
with which it can be analyzed, the first type of graph 
on which we shall study virus propagation is a random 
graph, illustrated in Fig. 1. We construct a random 
graph of N nodes by making random, independent de- 
cisions about whether to include each of the N( N - l) 
possible directional edges which can connect two nodes. 
If p is the probability for a particular edge to be in- 
cluded in the graph, the expected total number of edges 
is p N ( N  - 1). 
In our version of the SIS model, each edge has associ- 
ated with it an tnfectzon rate P , k  (also referred to as the 
bzrth rate of the virus) a t  which an infected node j can 
infect an uninfected neighbor k. Similarly, each node j 
has a cure rate 6, (or death rate of the virus) a t  which it 
will become cured if it is infected. The probabilities per 
unit time of infection along any edge and of cure of any 
node are independent. Once an individual is cured, it is 
immediately capable of being reinfected. The standard 
homogeneous interaction version of the SIS model is eas- 
ily recovered from this more general model by connect- 
ing all possible pairs of nodes and making all infection 
and cure rates identical. 
Our goal is to study the behavior of the SIS model on 
a typical member of the class of random graphs with 
N nodes and edge probability p. In the remainder of 
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Figure 1: Random graph with 10 nodes. Black filled and unfilled 
circles represent infected and uninfected nodes, respectively. The 
probability per unit time that node 2 will infect node 4 is 0 2 4 ,  

and the probability per unit time that node 2 will be cured is 
6 2 .  If node 4 becomes infected by either node 2 or node 6 ,  its 
probability per unit time of being cured will be 64. 

this section we explore several different techniques for 
doing so: the deterministic approximation, approximate 
probabilistic analysis, and simulation. 

2.1 Deterministic Approximation 
It is often the case that a deterministic analysis can pro- 
vide a reasonably accurate picture of many aspects of 
the dynamics of an epidemic [27], [32]. For the sake of 
simplicity, we shall assume that the infection rate along 
each edge is and the cure rate for each node is 6. If the 
population N is sufficiently large, we can convert 1 ( t ) ,  
the number of infected nodes in the population at  t imet ,  
to z( t )  E I ( t ) / N ,  a continuous quantity representing the 
fractzon of infected nodes. Then, if we assume that the 
details of the graph’s connectivity are fairly unimpor- 
tant, the dynamics of infection depend only upon how 
many nodes are infected (rather than whzch particular 
nodes are infected). Later, in section 2.3, when we use 
simulations to test the validity of this assumption, we 
shall find that it works well when there are many edges 
in the graph but fails miserably when there are only a 
few edges per node. 
Now consider a particular infected node. Since the ex- 
pected number of edges in the graph is p N ( N  - l ) ,  
the expected number of edges emanating from this 
node (which we shall refer to as the connectzvzty 3,  is 
6 = p ( N  - 1). The fraction of neighbors that are sus- 
ceptible to infection is 1 - i, so the expected number 
of uninfected nodes which can be infected by this node 
is b( 1 - i). Therefore, on average we expect the total 
system-wide rate a t  which infected nodes infect unin- 
fected nodes to be P’I(1 - i), where p’ is the 

’The term “connectivity” is used in a different sense by graph 
theorists. 

average total rate a t  which a node attempts to infect 
its neighbors. The system-wide rate at which infected 
nodes are cured is simply 61. By ignoring stochastic 
variation in the number of branches emanating from 
each node and in the average infection and cure rates, 
we obtain a deterministic differential equation describ- 
ing the time evolution of i ( t ) :  

di 
- = P&i(l - i) - 6i. 
dt 

The solution t.0 Eq. 1 is: 

where p‘ S / p ’  is the average ratio of the rate a t  which 
an infected node is cured to  that a t  which it infects 
other nodes, and io E i(t = 0) is the initial fraction of 
infected nodes. 
If p’ > 1, the fraction of infected individuals decays ex- 
ponentially from the initial value io to 0, L e . ,  there is no 
epidemic. If p’ < 1, the fraction of infected individuals 
grows from the initial value io at a rate which is initially 
exponential ( ioe(P‘-6)t)  and eventually saturates a t  the 
value 1 - p’. This result has a simple intuitive inter- 
pretation: if the average number of neighbors that an 
individual can infect during the time that it is infected 
exceeds one, there will be an epidemic; if this number is 
less than one, the infection will die out. The existence 
of this threshold was first established for homogeneous 
interactions by Kermack and McKendrick [27] in the 
1930’s, and here we will show that it holds for directed 
graphs as well. According to this deterministic result, 
all that matters is the total rate p’ at  which an infected 
node transmits infection to other nodes - not the de- 
tails of how it distributes that infection. 

2.2 Probabilistic Analysis 
As we have just seen, the deterministic approximation 
is useful for estimating some important characteristics 
of epidemics - the conditions under which they occur, 
the rate a t  which they grow, and the expected num- 
ber of infections once they have reached equilibrium. 
However, since it ignores the stochastic nature of an 
epidemic, it provides no information about other im- 
portant features of the dynamics, inc.luding the size of 
fluctuations in the number of infected individuals and 
the possibility that fluctuations will result in extinction 
of the infection. Consider for a moment the issue of the 
survival of the virus in a population. The determinis- 
tic analysis concludes that there will be an epidemic if 
p’ < 1 and there will not be one if p’ > 1. However, 
it is intuitively clear that ,  even if p‘ < 1, a statistical 
fluctuation might wipe out the virus before it spreads to  
enough individuals to become firmly established. With 
a little more effort, we c.an formulate an approximate 
probahilistic analysis which captures these and certain 
other important aspects of epidemics which can not be 
obtained from a deterministic analysis. 
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As in the deterministic analysis of the previous section, 
we shall assume that the number of infected nodes suf- 
ficiently characterises the state of a system, i . e . ,  the 
details of which nodes are infected are relatively unim- 
portant. Although it is very easy to construct particular 
graphs for which such details are important (e.g., small 
graphs with a large variation in the in-degree and out- 
degree of nodes), we assume that the properties of most 
members of the class of random graphs with N nodes 
and edge probability p will not be sensitive to them. 
Again, we must resort to simulation (in section 2.3) to 
test the validity of these assumptions. First, we shall de- 
scribe the probabilistic approximation. Then, we shall 
use it to calculate various quantities of interest. 

2.2.1 Probabilistic Approximation 

Let p(Z, t )  denote the probability distribution for there 
to be Z infected individuals at time t .  Many quantities 
of interest can be calculated from this distribution. The 
probability that the infection is extinct at  time t is rep- 
resented by p ( 0 ,  t), and the expected number of infected 
individuals and its variance are easily computed by a p  
propriate sums over the p ( Z , t ) .  The time-evolution of 
this distribution is given by: 

- -  dp(z l  t ,  - -p(Z, t ) [RI ,I+  + R I , ~ - ]  + 
dt 

p ( Z + , t ) R I + - I  + ~ ( 1 -  1 ~ ) R I - - - I ,  (3) 

where 1- E denotes the 
rate a t  which transitions occur from state U to state b. 
The rates Ro-b can be calculated as follows. The prob- 
ability per unit time that a new infedion will occur is 
simply the number of infected nodes times the rate a t  
which each node tries to infect each of its neighbors 
times the probability that a given neighbor is suscepti- 
ble times the number of neighbors. If we assume that 
the various probabilities are independent (i.e., there is 
no correlation between the probability that a node is 
infected and the probability that its neighbors are in- 
fected), we obtain: 

- 1, I+ E I + 1, and 

where p’ E pb is the average total rate at which a node 
attempts to infect its neighbors. The probability per 
unit time that an infected node will be cured is simply 
the number of infected nodes times the rate at  which 
each is cured: 

Substituting these approximations for the rates into Eq. 
3, we obtain: 

where i 5 Z / N  and i* E Z k / N .  For a graph with N 
nodes, this is a set of N + 1 coupled linear differential 
equations which is relatively simple to solve because the 
matrix is tridiagonal. 
Figure 2 compares the expected number of infected in- 
dividuals as a function of time as obtained from Eq. 
6 with the deterministic result given by Eq, 2. The 
graph contains 100 nodes with connectivity b = 5, and 
the infection and cure rates are p’ = 1.0 and 6 = 0.2, 
respectively ‘. The agreement between the determinis- 
tic and stochastic averages is quite good, except for a 
notable difference between t = 7 and t = 12, when the 
number of infections starts to saturate. The expected 
magnitude of the stochastic deviations from run to run, 
represented by the gray area, grow to a maximum of 
*20 at t = 6.3 and then diminish to f 4 . 5 1  in equilib- 
rium. The large deviations during the exponential rise 
can be attributed to the extreme sensitivity of the num- 
ber of infected individuals at  a particular time to ran- 
dom jitter in when the exponential rise occurs. Thus, 
one would expect a lot of variance in the number of in- 
fected individuals from one simulation run to another. 
However, in equilibrium the size of the infected popu- 
lation is completely insensitive to the moment at which 
the exponential rise occurred, and the variations from 
one run to another are much smaller. In equilibrium, 
the ergodic hypothesis [33] also allows us to interpret 
these variations as the magnitude of fluctuations about 
the equilibrium. 
The same dynamics are presented from a different point 
of view in Figure 3, which shows snapshots of p(Z, t )  at 
successive stages in its evolution. The parameters are 
the same as in Fig. 2. Initially, at time t = 0, the prob- 
ability distribution is a delta function at Z = 1 ( i . e . ,  
there is exactly one infected node). As time passes, the 
probability distribution splits into two components: a 
delta function a t  I = 0 (corresponding to extinction 
of the virus) and a “survival” component which is ini- 
tially distributed exponentially (t = 1 ) .  At first, the 
mean of the survival component increases exponentially 
in time, and the standard deviation grows quite large, 
reaching a maximum of 20 at t = 6.3. Soon, however, 
the population becomes saturated with infected indi- 
viduals, and the survival component is nearly gaussian 
with a mean of 79.75 and a standard deviation of 4.51 
a t  t = 20. This “metastable” phase is extremely long- 
lived, but the extinction component grows extremely 
slowly a t  the expense of the survival component until 
finally it is all that remains. In general, any population 
of viruses will eventually die out, but the time scale on 
which this takes place is so long as to be unobservable 
unless the graph is quite small. Eventual extinction is 
inevitable because there is a very tiny probability that 
all infected individuals will detect and cure their infec- 
tion a t  approximately the same time. 
The fact that the metastable phase has a finite lifetime 

- -  d p ( z l t )  - - p ( Z , t ) [ Z ( l  - i)P’ + 6Z] + p(Z+, t )Z+6 + 
dt  

P ( Z - , W - ( l  - i - )P ’ ] ,  (6) 

‘These values for the infection and cure rates will be adhered 
to throughout this work to facilitate comparison of the various 
models. Since p’ = 6 = 0.2, the infection rate is five times the 
classical homogeneous threshold of p‘ = 1 for epidemics that was 
derived in section 2.1. 
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time 

Figure 2: Comparison of the number of infected nodes I as a 
function of time in the deterministic and stochastic models. The 
total population is 100 nodes. The average rate at which a node 
attempts to infect its neighbors is 0’ = 1.0, and the cure rate is 
6 = 0.2. Thus the system is above the classical threshold for an 
epidemic by a factor of 5 .  Black curve: deterministic I ( t ) .  White 
curve: stochastic average of I( t ) .  Gray area: One standard devi- 
ation about the stochastic average. The final equilibrium values 
differ by only 0.3%. For t > 15, the gray area can be interpreted 
as the magnitude of fluctuations about the equilibrium. 

means that we cannot define the probability that the 
virus becomes extinct without specifying the time pe- 
riod of interest. However, in practice the choice of a 
“time limit” has little effect on the measured extinction 
probability provided that it is somewhere within the 
wide timespan of the metastable regime. For those epi- 
demics which have not died out by a certain time limit, 
we are interested in the form of the survival component 
- the distribution p(I,t) for I > 0. Although p ( I , t )  
itself approaches 0 as 1 --t 00, the conditional proba- 
bility for there to be I infections given that there is a t  
least one infection approaches a well-defined metastable 
distribution: 

The survival component is then 

Given that an epidemic is still active after a given 
amount of time, we can calculate from pm the ex- 
pected number of infected individuals and the fluctu- 
ations about that expectation, and these quantities ap- 
proach a well-defined asymptote. 

2.2.2 Calculation of the Extinction Probability 
and the Metastable Distribution 

By making a few more approximations, we can derive 
expressions for the probability of extinction as a func- 
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Figure 3: Evolution of the probability distribution for the num- 
ber of infected individuals in the stochastic approximation. All 
parameters are the same as in Fig. 2. Starting from a state in 
which one individual is infected at t = 0, the distribution splits 
into an “extinction” component ( I  = 0) and a “survival compo- 
nent” which eventually assumes a gaussian form with the same 
average and standard deviation as in Fig. 2. The survival com- 
ponent lasts for an extremely long time, but decays with a time 
constant of 1.12 x lo3’. Note: vertical scales are not all the same. 
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tion of time, the expected lifetime of the epidemic, and 
the form of the long-lived metastable distribution p w .  
First, we shall derive an approximate expression for pa,. 
Setting the derivative on the left-hand side of Eq. 6 
equal to zero, we obtain an equation for the equilibrium 
distribution p ( I )  E p ( I ,  t 4 00): 

I ( l - Z + p ’ )  L ( 1 -  2-) 
41- 1)l (9) I+@ p ( l ) -  I+p’ p ( I +  1) = 

where p ( I )  = 0 for I < 0 or I > N and p’ s 6 / p ’ .  
Substituting I = 0 into Eq. 9, we obtain p(  1) = 0. We 
can then substitute p(  1) = 0 into the equation to obtain 
p ( 2 )  = 0. Continuing in the same fashion, we can show 
trivially that p ( I )  = 0 for all I > 0. This demonstrates 
our previous claim that the only equilibrium solution is 
the extinction component. 
However, the survival component is nearly a solution, 
and is only prevented from being one because of the slow 
leakage of probability to the extinction component. We 
may obtain the survival component by artificially stop- 
ping this leakage, which is achieved by setting p ( I  = 1) 
to some arbitrary constant p1 and using Eq. 9 to gen- 
erate p ( I )  for I > 1. The resultant distribution - 
the survival component - should then be normalized 
such that the sum of the probabilities is unity. Carry- 
ing out this procedure with p’ > 1, one can show that 
the survival component has an extremely short lifetime, 
which is consistent with the conclusion of the determin- 
istic analysis that no epidemic can occur if the infec- 
tion rate is less than the cure rate. On the other hand, 
if p’ < &, one can show that practically all of the 
nodes will be infected, and the lifetime of the survival 
component will be extremely long. 
In the more interesting intermediate case in which 

1 < I = I,,, < N. The value of I,,, is determined 
by the condition p(Imoz - 1) p(I,,,) z.p(Imaz + 1). 
Substitution of this condition into Eq. 9 yields 

- < p’ < 1, p ( I )  attains a maximum for some 

I,,, % N ( l  - p’)  + CJ(1). (10) 

Motivated by the form of the survival component in 
the last two frames of Fig. 3, we match a gaussian to 
P(Imaz - I), P( Imoz) ,  and P(Impr + 1) and normalize the 
sum of the extinction and survival components to unity, 
with the result: 

Thus we find that the metastable distribution is a gaus- 
sian with mean N( 1 -p ’ )  and standard deviation m. 
The mean is identical to that obtained from the deter- 
ministic approximation, and the standard deviation is 
virtually equal to that obtained from the numerical so- 
lution of Eq. 6 depicted in Fig. 3. 

Having obtained the metastable distribution, we can 
now use it to estimate the lifetime of the metastable 
survival component. First, we must obtain an expres- 
sion for p ( 0 ,  t ) ,  the extinction probability as a function 
of time. Returning to the dynamical equation for the 
evolution of the probability distribution (Eq. 6), sub- 
stituting I = 0, and using Eqs. 8 (which is valid once 
the distribution has assumed its metastable form) and 
11, we obtain: 

Solving Eq. 12 for p(0 ,  t ) ,  we find that, after the initial 
transient, the survival component decays exponentially 
with a characteristic lifetime given by 

Numerical solution of Eq. 9 reveals that Eq. 13 
yields a rather severe overestimate of the lifetime of the 
metastable phase. This can be attributed to the fact 
that, while the gaussian approximation of Eq. 11 to the 
survival component is very good in the vicinity of I,,, , 
it is exceedingly poor in the far reaches of the tail, at 
I = 1. However, the numerical solution confirms that 
the functional form of Eq. 13 is correct, i .e. ,  the life- 
time of a graph increases approximately exponentially 
with the number of nodes. For example, the lifetime of 
1.12 x for a 100-node graph is reduced to only 888 
for a 10-node graph, all other parameters being equal. 
The constant multiplying N in the exponent is about 
half that predicted by Eq. 13 when p‘ = 0.2. 
Finally, we can obtain a good approximation to the 
probability that the infection will become extinct before 
it reaches the metastable phase by letting the number 
of nodes N -+ do (rendering the lifetime infinite). Then 
Eq. 6 simplifies to: 

which is the well-known linear birth and death process 
[34]. A solution can be obtained by the method of gen- 
erating functions, with the result: 

where Io is the number of infected nodes which are orig- 
inally present in the population. 
To summarize, the probabilistic analysis corroborates 
the deterministic result that an epidemic can not occur 
if p’ 2 1. Contrary to the findings of the deterministic 
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analysis, even if p’ < 1, the probability that an epidemic 
will not occur is greater than zero, being equal to ~ ’ ~ 0 ,  

where Io is the number of infected nodes initially present 
in the population. This is not really a discrepancy. The 
deterministic analysis is founded on the assumption of 
an infinite number of nodes and an original fraction of 
infected nodes io.  Thus IO is infinite, and the probabilis- 
tic formula (Eq. 15) yields an extinction probability of 
zero. The probabilistic and deterministic analyses agree 
that the average number of infected nodes in equilibrium 
is N( 1 - p ’ ) ,  and the probabilistic analysis reveals that 
the root-mean-square fluctuations are m. Thus the 
relative size of the fluctuations decreases as &, which 
lends some justification to the assumption that they are 
zero in the deterministic analysis. 

2.3 Simulations 
Both the deterministic and stochastic analyses of the 
model required a number of assumptions which can only 
be tested by simulation. We have simulated the model 
using a straightforward event-driven implementation. A 
graph is generated randomly according to the prescrip- 
tion given at  the beginning of this section, and a single 
initially-infected node is selected randomly. Then, the 
simulation proceeds one event ( i . e . ,  an attempted in- 
fection or cure of a node) at a time, using time steps 
generated randomly according to an exponential distri- 
bution ’. The mean of this distribution is determined 
by the probabilities per unit time of infection and cure, 
the number of infected nodes, and the number of edges 
emanating from the collection of infected nodes. 
Figure 4 compares a typical simulation run on a 100- 
node graph to the corresponding deterministic solution, 
using the parameters of Figs. 2 and 3. The simulation 
run follows the deterministic solution reasonably well, 
except that the equilibrium appears to be lower. 
To investigate this discrepancy, we performed 2500 sim- 
ulation runs using the same parameters but different 
seeds for the random number generator. In 25.9 k 0.9% 
of the runs, the population became extinct by t = 1200 
(a time limit that we chose to be comfortably within the 
metastable regime). This is noticeably larger than the 
extinction probability of 0.20 predicted by Eq. 15. For 
each of those runs which survived, we measured the av- 
erage number of infected individuals between t = 200 
and t = 1200 and the fluctuations about this equi- 
librium. The average equilibrium for these runs was 
75.01 f 0.04, which as we suspected from Fig. 4 is 
significantly lower than the deterministic prediction of 
N( 1 - p ’ )  = 80.0 and the stochastic prediction of 79.75. 
The average magnitude of the fluctuations within a run 
was 4.857 f 0.005, somewhat larger than the stochastic 
prediction of 4.508. The variation in the equilibrium ob- 
tained across different simulation runs was only k1.65, 

‘The event-driven simulation has computational advantages 
over simulations which employ fixed time steps. Within a fixed 
time interval, no events can occur (which is inefficient), or several 
C M  occur, causing confusion about the order of the events within 
that interval. The event-drivensimulation guarantees that exactly 
one event occurs per time step. 

... .. ..... ........... ....... . . _..... ..... ........ \ 

time 

Figure 4: Comparison between average number of infected indi- 
viduals vs. time as given by deterministic theory and a typical 
simulation run on a randomly-generated graph with 100 nodes. 
The average number of edges emanating from each node is 6 = 5, 
and all other parameters are as given in Fig. 2. The magnitude of 
the fluctuations agrees reasonably well with that predicted by the 
stochastic theory (compare with Fig. 2),  but the average number 
of infected individuals is slightly lower. This discrepancy can be 
attributed to the low connectivity of the graph (6  = 5).  

indicating that the entire class of random graphs is in 
fact well-characterized by these measurements - one 
of the main assumptions made in the deterministic and 
stochastic analyses. 
Why is the extinction probability a bit higher and the 
average number of infected individuals a bit lower than 
predicted? The fault must lie in one or more of the ap- 
proximations that were used to derive the deterministic 
and stochastic theories. The most likely suspect is the 
neglect of the particular details of how nodes are con- 
nected to one another. This assumption came into play 
in at  least two guises. First, it allowed us to assume 
that the dynamics could be expressed solely in terms 
of how many nodes were infected, without having to 
delve into the details of zuhzch were infected (a problem 
that would be completely intractable). Second, we ne- 
glected variation in the number of nodes that a given 
node could ii:fect, assuming that every node tried to in- 
fect exactly b other nodes. Intuitively, we expect both 
of these assumptions to become increasingly valid as the 
connectivity b is increased. 
Imagine for a moment the extreme limit of tenuousness 
(below what is referred to by random graph theorists 
as the percolataon threshold [35]), in which most nodes 
are isolated and a few are joined in small clusters. It 
is readily apparent that infection cannot spread beyond 
the small cluster in which the initially infected individ- 
ual is located. Thus the equilibrium level should be 
depressed substantially below the homogeneous limit. 
If the infection is confined to very small clusters, it be- 
comes much more likely that all infections in the cluster 
will be detected and cured a t  approximately the same 
time. In such a case, the lifetime of the metastable 
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phase could become less than our chosen time limit, in 
which case the measured extinction probability would 
increase. Thus, infections should die out more easily in 
tenuous graphs. 
This conjecture is borne out by Figure 51 in which we 
have varied the connectivity of the graph b, keeping the 
average total rate at which a node-attempts to infect 
its neighbors fixed at p' = 1.0. For b < 1.0, it is nearly 
certain that the infection will die out quickly. Tke ex- 
tinction probability drops precipitously for 1 < b < 2 
e d  slowly approaches the homogeneous limit of 0.20 as 
b is increased to  10 and beyond. When the simulations 
are repeated on graphs of 1000 rather than 100 nodes, 
the behavior is quiee similar, except that the transition 
in the range 1 < b < 2 becomes slightly sharper. In 
Fig. 5b, we see that the average number of infections 
in equilibrium is severely depressed below the homoge- 
neous limit in tenuous graphs. Again, there is a charac- 
teristic curve which is fairly insensitive to the sise of the 
graph except in the transition region, which becomes 
sharper for larger graphs. We have observed similar 
qualitative behavior in simulations in which p' = 0.5, in 
which case the tracsition region is shifted upwards to 
approximately 2 < b < 4. 

2.4 Weak Links 
In the random graph model that we have examined so 
far, a node is able to infect only a few other nodes in 
the graph (at least for the typical situation in which 
6 << N). Although it is probably true that most users 
share most of their programs with a small number of 
other individuals, there is generally a much larger group 
of other individuals with whom they exchange programs 
every once in a while. To what extent will these extra 
pathways enable viruses to spread? 
We study the effect of infrequent sharing with a large 
number of other individuals by modifying the random 
graph model slightly, giving a node a small but finite 
chance of infecting any node which is not explicitly con- 
nected to it. In addition to the previously-defined infec- 
tion rate p, which we shall now refer to as the "strongn 
infection rate, we define the "weak" infection rate pw . 
As before, the average total-infection rate through the 
"strongn links is given by pb.  The average total_infec- 
tion rate through the "weak" links is p w ( N  - b - 1). 
Thus the total infection rate through all links is: 

p' E p6 + pw ( N - 6 - 1) = ( 1 + w p b ,  ( 16) 

where 

PW(N - 6 -  1) 

P i  
W E  

is the ratio between the total weak and strong infection 
rates. 
Figure 6 displays the effect upon the extinction proba- 
bility and the average number of infections in equilib- 
rium of various ratios w. The results for w = 0 are 

a) ExtlncIion Probablllty 
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Figure 5: Extinction probability (a) and average number of in- 
fections (b) vs. connectivity 6 for random graph with the usual 
infection and cure rates: p' = 1.0 and 6 = 0.2. Each point r e p  
resents an average over 2500 simulation runs. For b < 1, it was 
extremely rare for an epidemic to survive beyond the time limit 
of 1200, despite the fact that the infection rate is 5 times the 
classical epidemic threshold. For higher connectivities, the ex- 
tinction probability and the average number of infected individ- 
uals approach the values predicted by the classical homogeneous 
interaction theory. The dependence of these quantities upon the 
connectivity changes very little when the number of nodes in the 
graph is increased from 100 to 1000; the transition region becomes 
slightly sharper. (Note: the measured equilibria for 1000-node 
graphs have been divided by 10 to scale them properly to the 
100-node results.) 

simply those of Fig. 5, i .e. ,  there are no weak links. 
When w is increased to 0.2, the qualitative behavior of 
both the extinction probability and the average number 
of infections is the same, but the transition region is 
shifted towards more tenuous connectivities. For exam- 
ple, a graph with b = 0.9, which is practically impervi- 
ous to infection when there are no weak lipks, becomes 
behaviorally equivalent to a graph with b = 1.5: the 
extinction probability drops to nearly 1/2, and nearly 
half of the population is infected in equilibrium. When 
w is increased further to 0.5, the transition region d i sap  
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pears. Thus for i -+ 0 there is a finite probability (0.40) 
for an epidemic to occur, and the average number of 
infected individuals in equilibrium is 40. These limiting 
values are easily understood by completely disregarding 
the strong links, in which case we have from Eq. 16 
that the effective value of p' is 1/3 of its nominal value, 
or pif, 5 1/3. Since 6 = 0.2 < /?:ff, the conditions 
for an epidemic to occur are satisfied by the weak links 
alone, with an effective value of pLff E 6/pLff = 0.6, in 
agreement with the simulation. 
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Figure 6: Extinction probability (a) and average number of in- 
fections (b) vs. connectivity 6 for random graph with weak links. 
Three different values of the ratio w between the sum of the weak- 
link infection rates and the sum of the strong-link infection rates 
are presented. As usual, the infection and cure rates arc p' = 1 .O 
and 6 = 0.2. Each point represents an average over 2500 simula- 
tion runs on 100-node graphs. As the weak links become stronger, 
the extinction probability and the average number of infections 
approach their homogeneous limits over a wider range of connec- 
tivities. 

The simulation results of Figs. 5 and 6 suggest that the 
homogeneous limit is reasonably good when the total 
infection rate is spread among a sufficient number of 
nodes. However, when too much of the total infection 
rate is concentrated into too few nodes, epidemics have 
a much harder time establishing themselves than would 

be predicted by the homogeneous approximation. For 
example, according to Fig. 6a, when the connectivity 
b = 1 and there are no weak links, the epidemic thresh- 
old is approximately p' = 56, which is five times the 
classical value. Other simulaLions that we have not pre- 
sented here indicate that, fnr b = 2, the epidemic thresh- 
old is about twice the classical value. These results are 
unaffected by the number of nodes N in the graph, pro- 
vided that N exceeds about 100. Weak links diminish 
the increase in the threshold, but do not eliminate it. 
For example, when the total infection rate through the 
weak links is 0.2 times the total infection rate through 
the strong links (w  = 0.2), the threshold can be five 
times the classical value, but only if the graph is twice 
as tenuous ( b  = 0.5) as it needs to be when there are no 
weak links. 

3 Hierarchical Model 
Motivated by a desire to study the effect of infrequent 
program sharing with many other individuals, we aug- 
mented the random graph model by introducing weak 
links in section 2.4. However, the classification of links 
into just two types - strong and weak - is a bit crude. 
It is probably more realistic to assume that an individ- 
ual exchanges programs at  a very high rate with very 
few other individuals, a t  a lower rate with a larger class 
of other individuals, at  an even lower rate with an even 
larger class of others, e t c .  This leads naturally to the 
hierarchical model illustrated in Figure 7. 

Figure 7: Binary hierarchical graph with 3 levels. Infection rates 
between nodes separated by a given number of levels are listed to 
the left of the tree. Infected and uninfected nodes are represented 
by black and unfilled circles, respectively. Initially, only node 2 
was infected, but it quickly infected node 1. For a while, nodes 
1 and 2 attempted to infect one another (to no effect, since they 
were already infected). Eventually, node 1 attempted successfully 
to infect node 3. Node 3 quickly infected node 4, but was cured 
soon afterward. Node 3 will probably be infected soon by node 
4, but nodes 5 ,  6, 7, and 8 will probably not be infected for a 
relatively long time. 

The hierarchical model has an unexpected side benefit. 
Note that all nodes with a given subtree communicate 
with one another more frequently than with any node 
in any other subtree. Thus, the hierarchy of rates au- 
tomatically enforces a hierarchy of cliques '. In the 

6We use the term "clique" in its colloquial sense, not in its 
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computer community, cliques of users certainly exist, 
although not in such an extreme form as in this model. 
For example, users within a department may share soft- 
ware frequently among themselves, less frequently with 
users in other departments of the same company or uni- 
versity, and still less frequently with users in other cities 
or countries. The random graph model and others de- 
rived from it are incapable of accounting for such corre- 
lations because of the way in which they are constructed 
- the connections are chosen randomly and indepen- 
dently. 
For simplicity, we assume that the frequency of contact 
between two nodes decreases geometrically with the dis- 
tance 1 between them (the number of levels one must go 
up in the tree to reach a common ancestor), while the 
size of the class of neighbors at a given distance grows 
geometrically with 1. More explicitly, assume that the 
hierarchy consists of a binary tree with L levels. Then 
there are N = 2L nodes. Suppose that the infection 
rate between nodes separated by a distance e is given 
by Arf-'. The number of nodes at distance is simply 
2'-'. Therefore, the total infection rate from one node 
is 

As before, we assume that the cure rate for each node 
is 6. 
By keeping f l  and 6 fixed and varying the localization 
parameter r ,  we can explore a wide range of situations. 
When r = 0, the network effectively consists of isolated 
pairs of nodes with infection rate p'. By setting r = 1, 
we obtain the homogeneous limit, in which the infection 
rate between all pairs of nodes is equal to g. Thus, 
the paramete! r ought to be similar in its effect to the 
connectivity b. 
We have investigated the dependence of the extinction 
probability upon the localization parameter by means 
of simulation. The results are summarized in Fig. 8. 
As expected, the extinction probability exhibits thresh- 
old behavior qualitatively similar to that of Fig. 5a. 
For strongly localized graphs, extinction of the infected 
population is virtually guaranteed, even though the in- 
fection rates are well above the classical threshold (by 
a factor of five for p' = 0.2 and a factor of two for 
p' = 0.5). As r -+ 1, the extinction probability a p  
proaches the homogeneous limit, as expected. The u p  
ward shift in position and the increase in width of the 
transition region as p' is increased are both consistent 
with what we have observed for larger values of p' as 
the connectivity is varied in the random graph model. 
Note that we have not presented the corresponding 
curves for the average number of infected individuals 
in equilibrium. The reason is quite interesting. When 
r is in the transition region, the individual simulation 
runs often fail to attain a well-defined equilibrium. A 

graph-theoretical sense. 
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Figure 8: Extinction probability vs. localization parameter r for 
SIS model on hierarchical graph of 128 nodes. For sufficiently 
localized interactions (small r ) ,  rapid extinction of the virus is 
virtually assured, even when the infection rate is well above the 
classical epidemic threshold (by a factor of 5 for p' = 0.2 and 
a factor of 2 for p' = 0.5). The relatively small width of the 
transition region is reminiscent of Fig. 5a. 

typical example, shown in Fig. 9, displays a character 
much more mercurial than that of a typical simulation 
in the random graph model (Fig. 4 . In Fig. 4, a well- 

ever, in Fig. 9, the number of infected individuals I 
varies over a large range in a very irregular fashion even 
after many hundreds of time units. The range within 
which I varies lies far below the homogeneous limit of 
N (  1 - p') = 102.4, as is expected since r is in the transi- 
tion region. Inspection of a number of individual simu- 
lation runs strongly suggests that the metastable phase, 
if it exists, is much shorter in duration than its random 
graph counterpart. This is reasonable because rapid ex- 
tinction is consistent with the small number of infected 
individuals and the large magnitude of the fluctuations 
in that quantity. 
We have also performed simulations on larger hierarchi- 
cal graphs with as many as 8192 nodes. Interestingly, in 
the transition region the average number of infections 
does not increase with the size of the graph, and the 
magnitude and irregular character of the fluctuations is 
unaltered. This contrasts strongly with the behavior of 
random graphs, for which the number of infected indi- 
viduals scales linearly with N and the relative size of 
the fluctuations decreases as a. In some simulation 
runs, one can identify a series of plateaus in I ( t ) ,  s e p  
arated by relatively rapid growth spurts. The growth 
spurts occur when a node "gets lucky" and infects a 
distant node, which then spreads the infection through- 
out a previously untouched region of the graph. When 
r is sufficiently far above the transition region, I ( t )  con- 
tinues to grow until it saturates eventually at the ho- 
mogeneous equilibrium. The rate at which it does so is 
much slower than for a random graph and is extremely 

defined equilibrium level is reache d by t = 10. How- 
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Figure 9: Number of infections I VS. time for typical simulation 
run on 128-node hierarchical graph with localization parameter 
r = 0.1. The infection and cure rates have their usual values of 
0' = 0.1 and 6 = 0.2. The aimless, irregular drift in the number of 
infected individuals at a value much lower than the homogeneous 
equilibrium (I = 102.4) is characteristic of simulation runs with 
localization parameter lying within the transition region (see p' = 
0.2 curve in Fig. 8). 

sensitive to r (see Fig. 12). The functional form of the 
growth rate and its dependence upon r is not yet known. 

4 Spatial Model 
The hierarchical model of the previous section allowed 
us to explore the consequences of localized program shar- 
ing. In this section, we shall learn more about the effects 
of locality by studying epidemics on a completely dif- 
ferent topological structure - a d-dimensional Cartesian 
lattice. Each point in the lattice represents a node which 
can infect or be infected by all nodes within some local 
neighborhood. As in the hierarchical model, locality 
immediately implies the existence of cliques, but their 
form is somewhat different in the spatial model. For 
example, consider the neighborhood of infectible nodes 
surrounding node A. Jf we move one step to the rigl-t to 
node B, we find that B's neighborhood has  many nodes 
in common with A's. 
Although it may be less realistic in some respects than 
the hierarchical model, the spatial model offers the ad- 
vantage of being more amenable to deterministic anal- 
ysis. Given our experience that random graphs with 
sufficient connectivity are reasonably well-described by 
a deterministic approximation, we expect this to hold 
for the spatial model as well, provided that the neigh- 
borhood is sufficiently large. First, we shall use a de- 
terministic approximation to derive an equation for the 
spatio-temporal dynamics of an epidemic. Then, we 
shall confirm these results with simulations. 

4.1 Deterministic Analysis 
To begin the analysis, imagine imbedding a graph in 
a d-dimensional space by associating each node j arbi- 

trarily with a position E,. We can derive a deterministic 
approximation for i(5, t ) ,  the fraction of infected indi- 
viduals at  position 5 at time t ,  as follows. Let p(Z,  9) 
represent the rate a t  which the node at i? attempts 
to infect the node at  E and 6 5) represent the rate at 

following the same considerations as were used to derive 
the deterministic approximation for random graphs, we 
obtain: 

which a node a t  2 is cured (i 1 it was infected). Then, 

-- ai(E9t) - CP(E,E')i(E',t)(l - i (5 , t ) )  - S(E)i(Z,t) 
2" 

at 

(19) 
Note that Eq. 19 is a slightly generalized form of Eq. 
1, with node indices replaced by positions. 
Now assume that a node can only interact with nodes 
lying within some small local neighborhood, and that 
the infection rates between two nodes depend only upon 
the distance between them. Furthermore, assume that 
the cure rate 6 is independent of E. Then, if i(5,t) 
and /3( [E - IC" I) vary sufficiently slowly from one node 
to another, we can treat them as continuous functions, 
in which case it can be shown that Eq. 19 becomes 
approximately: 

D( 1 - i(E, t))V2i(E, t) (20) 

where 

D E - d$(r)r2. (21) 11 
The first two terms in Eq. 20 are the familiar growth 
and decay terms that appear in Eq. 1. By themselves, 
they describe growth or decay of the level of infection 
at  each point in space independently of the dynamics 
a t  any other point in space. The last term is something 
new. It is a second-order spatial derivative which ac- 
counts for diffusion of infection between different points 
in space. The diffusion coefficient D can be derived for 
various assumptions about the influence of nodes upon 
their neighbors. For example, if p(f') is uniform within a 
hypercubic volume V = Ld with integral 0' E S;d?,(f'), 
D = p'L2/24. If p ( 3  is gaussian-distributed with stan- 
dard deviation q, D = p'q2/2 .  
Due to the assumed radial symmetry of O(1E - ."I), 
i(E, t) will remain radially symmetric if the initial con- 
dition i(5,O) is. Such a choice greatly simplifies both 
the calculation and the presentation of the results. Fig- 
ure 10 depicts the typical course of an epidemic in two 
dimensions as predicted by Eq. 20, where i(z,O) 1s a 
narrow gaussian with volume 0.0001~.  The population 
inhabits a circle of radius 1, so this initial distribution 
constitutes 1/10000 of the population. 
In its first phase of growth, the pulse grows in height 
(t = 4). When the pulse saturates a t  the equilibrium 
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Figure 11 illustrates the state of a typical simulation 
run auring the spreading phase of the epidemic. Ini- 
tially, the central node in the 100 by 100 array was in- 
fected. The size of the neighborhood was chosen to be 
.! = 3, i .e. ,  it was composed of the 8 nearest neighbors. 
It is interesting to note that, despite the fact that p(3 
is square in shape, the pattern of infection is roughly 
circular. In fact, the greater generality of radial spread- 
ing is expected from details of the derivation of Eq. 20 
which we have omitted here. 

Figure 10: Density of infected individuals a as a function of radius 
r from the initially source of infection at times t = 0,4, 20,50, and 
80. As usual, the infection and cure rates are p’ = 1 .O and 6 = 0.2. 
The diffusion coefficient D = 3.75 x lo-&. Initially, 0.0001 of the 
population is infected, represented by a narrow garusian with a 
standard deviation of 0.02 near r = 0. At first, the height of the 
gaussian grows, until it saturates at the homogeneous limit of 0.8. 
Then, the infection enters a diffusive phase, growing outward at 
constant velocity in a circle with a fairly sharp boundary of fixed 
shape. Eventually, the spatial distribution of infection becomes 
uniform, with 80% of the individuals being infected. 

0 t; 20 40 60 80 11 

value of 0.8, it remains pinned a t  that value but keeps 
spreading outward radially. The leading front of the ex- 
panding circle develops a sharp edge, with a radius that 
increases a t  a constant velocity (note the positions a t  t 
= 20, 50, and 80). Thus the number of infected indi- 
viduals, proportional to the area of the circle, increases 
quadratically with time. In d dimensions, the infection 
expands outward a t  constant velocity as a sharpedged 
sphere, so the number of infected individuals grows as 
t d .  This is of course much slower than the exponential 
growth of the random graph model. Finally, when the 
infection reaches the entire population, the total frac- 
tion of infected individuals reaches the same limit as in 
the random graph model, and its distribution is spa- 
tially uniform. 

4.2 Simulations on Two-Dimensional Lat- 

We have simulated epidemics on a two-dimensional 
square array wrapped around in both dimensions to 
form a torus (so as to avoid edge effects). The neigh- 
borhood about each node is an .!-by-.! block centered on 
(but not including) itself. The infection rate is equal 
to A for each node within that neighborhood and 
zero for all nodes outside of it. The dynamical details 
of the simulation are identical to those which we have 
presented for the random graph; the only difference lies 
in the choice of infection rates between pairs of nodes. 
Thus, if we were to expand the neighborhood to include 
all of the nodes, our resultant system would be equiva- 
lent to a fully-connected graph and its dynamics would 
be described by the homogeneous limit. 

t ices 

I 

Figure 11: State of an epidemic in diffusion phase ( t  = 50) M 

obtained from a simulation on a 100-by-100 may.  The infection 
and cure rates are p’ = 1.0 and 6 = 0.2, as usual. Each node C M  

infect the 8 neighbors lying within a 3-by-3 square centered on 
itself. Black and white squares represent infected and uninfected 
individuals, respectively. As in the theoretical curves of Fig. 10, 
the boundary of the expanding circle of infected nodes is roughly 
circular and fairly sharp (despite the fact that the infection neigh- 
borhood is square). 

Simulations verify the quadratic rowth with time of the 
total number of infected individtuals. Figure 12 com- 
pares the relative rates a t  which the equilibrium is at- 
tained in the two-dimensional lattice with that of the 
random and hierarchical graphs. In order to provide a 
fair comparison, the infection and cure rates were 
their usual values of p’ = 1.0 and 6 = 0.2, a n f i z  
number of nodes in the simulation of each of the three 
models was chosen to be as close as possible to  10000. 
Furthermore, the connectivity of the random graph and 
the localization parameter of the hierarchical graph were 
chosen to be well above the transition region, so that the 
equilibrium would be as close as possible to the homo- 
geneous limit. 
It must be emphasized that the curves in Fig. 12 are 
not to be taken as an absolute comparison of the growth 
rates for these three models. The exact rates depend 
upon the diffusion coefficient in the spatial model and 
are extremely sensitive to the localization parameter in 
the hierarchical model. (For example, when 7 is in- 
creased by only lo%, the growth rate is increased by 
about 35%.) It is the functional form of the growth that 
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5 Conclusion 
Cohen showed that a perfect defense against computer 
viruses is impossible; we have shown that it may be 
unnecessary. Defense mechanisms are adequate for pre- 
venting widespread propagation of viruses if the rate 
a t  which they detect and remove viruses is sufficiently 
high relative to the rate at  which viruses spread between 
users. The fact that an epidemic can only occur if the 
infection rate exceeds a finite critical threshold has been 
known in the biological realm for over half a century; we 
have shown that this result holds in the computational 
realm as well. For conditions which seem likely to hold 
in the computational domain, we have discovered that 
the epidemic threshold is actually higher than its clas- 
sical value. Another encouraging finding is that, even if 
the infection rate is above the epidemic threshold, the 
number of infected individuals grows much more slowly 
than predicted by the standard homogeneous interac- 
tion model if the interactions are local. 
In section 2, we formulated the directed random graph 
model and studied its behavior using three different 
techniques: deterministic approximation, stochastic a p  
proximation, and simulation. We obtained theoretical 
results which were essentially identical to those of the 
classical homogeneous interaction theory by ignoring 
the details of the connectivity of the graphs. In partic- 
ular, we found that epidemics can not occur unless the 
ratio of the total rate at  which an infected individual 
attempts to infect other individuals exceeds the rate at 
which individuals become cured. If the infection rate ex- 
ceeds this threshold, an epidemic is still not certain, but 
it becomes increasingly probable as the infection rate 
is increased further above the threshold. The average 
number of infected individuals in equilibrium increases 
with the infection rate. It can take on any value, from 
near zero when the infection rate is just above threshold 
to the size of the population when the cure rate (and 
hence the threshold) is zero. 
Simulations showed that these theoretical results hold 
when the connectivity of the graphs is sufficiently large, 
but fail miserably when the connectivity is small. In 
particular, if the total infection rate is held fixed while 
the connectivity is decreased, there is a dramatic de- 
crease in the probability of an epidemic and in the av- 
erage number of infected individuals. In other words, 
when the connectivity is small, the epidemic threshold 
is greatly increased over the value predicted by our ex- 
tension of the classical homogeneous interaction theory. 
To our knowledge, this is the first observation of an 
apparent interaction between two well-known threshold 
phenomena: the epidemic threshold discovered by Ker- 
mack and McKendrick in the 1930’s [27] and the perco- 
lation threshold for random graphs discovered by Erdos 
and RCnyi in 1960 [36]. 
In section 2.4, we added weak links to the random graph 
model to simulate the effect of infrequent program shar- 
ing with many other individuals. In this case, the epi- 
demic threshold is intermediate between the random- 
graph and the homogeneous values. The hierarchical 
model of section 3 was introduced to account for a dis- 
tribution of rates of program sharing in a more realistic 

i 
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Figure 12: Comparison of fraction i of infected individuals vs. 
time for random graph, hierarchical graph, and two-dimensional 
graph SIS models. The infection and cure rates have their usual 
values of p’ = 1.0 and 6 = 0.2. The number of nodes in the 
simulations are 10000 for the random and spatial models and 
2’’ = 8192 for the hierarchical model. In order to ensure that 
the equilibrium was close to the homogeneous limit, the connec- 
tivity of the random graph was chosen to be 6 = 10, and the 
localization parameter for the hierarchical graph was t = 0.225. 
The parameters for the spatial graph are as given in Fig. 11. 
As predicted, the growth in the infected population is quadratic 
in the spatial model, which is much slower than the exponential 
growth exhibited by the random graph model. The functional 
form of the growth of a in the hierarchical graph is not yet known. 

is of the greatest importance. As expected, the random 
graph attains the equilibrium a t  an exponential rate, 
while the two-dimensional spatial model reaches it at  a 
much slower, quadratic rate. The functional form of the 
growth rate for the hierarchical graph is not yet known, 
but in this and other simulations it appears to be quite 
slow. 

Thus both of the local models that we have stud- 
ied exhibit very slow growth compared to the random 
graph model (e.g., polynomial rather than exponential 
in time). We expect that this will prove to be the case 
for other more complicated and realistic models that 
take locality into account. In local models, the ma- 
jority of the infected nodes find themselves in a region 
that has already reached local equilibrium. It is only 
the relatively small number of nodes on the expanding 
front of the infected region that can spread the infec- 
tion to the uninfected nodes lying outside the region. 
Since they can only infect nodes lying close by, the vast 
majority of uninfected nodes lying outside the region 
are unavailable. The spread of infection on a random 
graph is much more efficient because the boundary of 
the infected region expands so rapidly that it quickly 
encompasses the entire graph. It is likely that the real 
situation lies somewhere in between the extremes r e p  
resented by the random graph model and the two local 
models that we have studied in this section and the pre- 
vious one. 
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manner than the weak-link model. In addition, it al- 
lowed us to capture the phenomenon of user cliques - 
groups of users which share programs with one another 
more frequently than with other users. We observed an 
increase of the epidemic threshold over its classical value 
which was very similar in character to that of the ran- 
dom graph model. Individual simulations of epidemics 
on hierarchical graphs revealed a number of interest- 
ing and surprising features. In some cases, the number 
of infected individuals fluctuated wildly; in others, the 
number of infections formed a series of plateaus sepa- 
rated by rapid growth spurts. 
Taken together, the results of the random graph, weak- 
link, and hierarchical models demonstrate that, when 
most of the total infection rate is concentrated into just 
a few nodes, epidemics have a much harder time estab- 
lishing themselves than predicted by the classical ho- 
mogeneous theory. We are currently trying to develop 
theories which can describe this very interesting effect 
quantitatively. 
By studying a spatial model in section 4, we viewed the 
effect of locality and user cliques from another perspec- 
tive and obtained some analytic results based upon a 
diffusion-like equation for viral spreading in space and 
time. We found that the number of infected individuals 
grows polynomially in time, as opposed to the exponen- 
tial growth rate in random graphs. The growth rate 
in the hierarchical model also appears to be polynomial 
under some conditions, but we have not yet obtained 
analytic results in this case. We believe that actual sys- 
tems are intermediate between the extremes of random 
connectivity and local connectivity, so we expect the 
growth rate of infection to be intermediate between that 
of the random graph model and that of the hierarchical 
and spatial models. 
The epidemiological approach to the study of computer 
virus propagation is quite general because it makes no 
assumptions about how viruses are detected and re- 
moved. Any mechanism that diminishes the infection 
rate or increases the detection rate will help to pre- 
vent widespread epidemics. The existence of a sharp 
threshold for epidemics means that it is worth doing ev- 
erythin possible to bring the infection rate below this 
threshofd, but that further effort is not warranted. Our 
discovery that the topolo y of program sharing can have 
a profound effect upon t8e ability of viruses to  spread 
may eventually lead to alternative methods for s u p  
pressing epidemics which could supplement the above- 
mentioned efforts to affect the infection and cure rates. 
While the models that we have studied are still some- 
what simplistic, we expect that future work on more 
complex and realistic models will retain many of the 
features that we have observed here. 
The work that we have presented here immediately sug- 
gests a number of areas for further research. We are 
currently trying to gain a better understanding of how 
the epidemic threshold depends upon the connectivity 
of a random graph. Our present understanding of the 
hierarchical model is solely based upon simulations, and 
we would like to develop theoretical expressions for the 
epidemic threshold as a function of the localization pa- 

rameter and for the functional form of the growth rate of 
an epidemic. The peculiar phenomena that we have ob- 
served in individual simulations on hierarchical graphs, 
such as wild fluctuations and plateaus in the number of 
infected individuals as a function of time, deserve fur- 
ther attention. We would also like to experiment with 
disordered hierarchical graphs, in which the hierarchy 
of rates is retained but the locality of interactions is 
strongly disturbed or destroyed. This might allow us to 
isolate the effects of locality more cleanly. 

We have not touched upon several areas that merit fu- 
ture investigation. A number of other models in the 
epidemiological literature have important analogs in the 
computational realm. In particular, the SIR (suscepti- 
ble -+ infected 4 removed) model, in which individu- 
als become permanently immune once they have been 
infected and cured, would be appropriate in the limit 
where users become extremely vigilant after having ex- 
perienced a viral infection. The actual situation is prob- 
ably somewhere between the SIS and SIR extremes. Af- 
ter discovering a viral infection, users may initially be- 
come much more conscientious about using anti-virus 
software, but if a long time passes without incident they 
may relax their vigilance to some degree. Models anal- 
ogous to this scenario have been studied within a bio- 
logical context, for there are some cases in which the 
body gradually loses its immunity to a particular d i s  
ease [27]. Another interesting notion is the "kill signal", 
a message sent by a node upon discovering that it is in- 
fected, warning all nodes to  which it is connected that 
they may also be infected. Our preliminary investiga- 
tions suggest that this may be one of the most powerful 
means for thwarting epidemics. Certainly, it makes a 
good deal of intuitive sense and has long been used in 
the medical profession for the purpose of stamping out 
sexually transmitted diseases. The kill signal is just one 
of many examples of adaptive responses to viral infec- 
tion. A close study of the immune system might prove 
to be a rich source of ideas for other adaptive methods 
for control and suppression of computer virus infections. 

Finally, we feel that it is of the utmost importance to 
collect data on program-sharing habits and viral spread 
rates and incorporate them into our models. User sur- 
veys and centralised reporting of virus incidents would 
be invaluable. As epidemiologists have discovered, the 
task of collecting such information and incorporating it 
into models is fraught with difficulties, but we hope to 
benefit from the decades of experience that they have 
accumulated in dealing with such problems. 

We are not the first to apply the mathematical tech- 
niques of epidemiology outside of the biological realm. 
Mathematical epidemiology has been used to  gain in- 
sights into how ideas propagate [37] and, more practi- 
cally, to develop novel algorithms for maintaining repli- 
cated databases [38]. As often occurs when mathemati- 
cal techniques are adapted to new applications, we have 
been forced to extend those techniques in somewhat un- 
familiar and unanticipated directions. We hope that in 
so doing we have enriched mathematical epidemiology 
and all fields to which i t  can be applied as much as we 
have benefitted from using it. 
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